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Abstract. Biogeochemical (BGC) models are widely used in ocean simulations for a range of applications, but typically include

parameters that are determined based on a combination of empiricism and convention. Here, we describe and demonstrate an

optimization-based parameter estimation method for ocean BGC models with large numbers of uncertain parameters. Our

computationally efficient method combines the respective benefits of global and local optimization techniques and enables

simultaneous parameter estimation at multiple ocean locations using multiple state variables. We demonstrate the method for5

a 17-state-variable BGC model with 51 uncertain parameters, where a one-dimensional physical model is used to represent

vertical mixing. We perform a twin-simulation experiment to test the accuracy of the method in recovering known parameters.

We then use the method to simultaneously match multi-variable observational data collected at sites in the subtropical North

Atlantic and Pacific. We examine the effects of different objective functions, increasing levels of data sparsity, and the choice

of state variables used during the optimization. We end with a discussion of how the method can be applied to other BGC10

models, ocean locations, and mixing representations.

1 Introduction

Biogeochemical (BGC) models used in global and regional ocean simulations often contain tens to hundreds of uncertain pa-

rameters (e.g., Long et al., 2021). Typically, these parameters are determined by a combination of laboratory experiments, em-

piricism, expert opinion, and model tuning constraints, with the ultimate goal of achieving good agreement between simulation15

results and observational data across a range of ocean conditions and locations (Doney et al., 2009). The high computational

cost of solving the coupled physical and BGC equations has slowed progress in BGC parameter estimation, yet accurate model

parameters are crucial for quantifying key climate processes, such as the strength of the ocean’s biological carbon pump (e.g.

Henson et al., 2015).

In the present study, we address this challenge by describing and demonstrating a computationally efficient ocean BGC20

parameter estimation method that takes into account multiple sites and multiple variables. We perform an initial global search
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of the model parameter space to determine appropriate starting points for subsequent gradient-based local optimizations. The

parameter values giving the best locally optimized solution are then taken as the final parameters. We demonstrate the approach

by simultaneously optimizing 51 uncertain parameters in a 17-state-variable BGC model at sites in the subtropical North

Atlantic and Pacific. To calibrate the BGC model, we couple it to a one-dimensional (1D) vertical ocean mixing model and25

match several observational fields at each site. We verify the accuracy of the method using a twin simulation experiment (TSE),

where we estimate known model parameters from synthetic data generated by a reference model simulation. Subsequent to

verification using the TSE, we then use the method to estimate parameters for the two sites, both individually and together.

The present study extends prior efforts to use optimization methods in BGC model parameter estimation. Matear (1995)

used conjugate gradient and simulated annealing methods to calibrate three-, four-, and seven-parameter BGC models, with30

simulated annealing proving to be more reliable for higher dimensional (in parameter space) models. Oliver et al. (2022) used

TSEs to test two derivative-free optimization techniques by attempting to recover six parameters in a nine-component BGC

model coupled to a three-dimensional (3D) mixing representation using the transport matrix method (Prieß et al., 2013; Kriest

et al., 2017; Kriest, 2017; Sauerland et al., 2019). Of the six parameters, five were recovered and the model results were found

to be insensitive to the last parameter. Derivative-free optimization using a least squares method was found to be more efficient35

than the covariance matrix adaptation evolution strategy, which was also applied in earlier studies (Kriest et al., 2017; Kriest,

2017).

In general, these and other studies have found that local and gradient-based methods fare poorly in the optimization of BGC

models. Ward et al. (2010) tested an adjoint-based gradient descent method against a micro-genetic algorithm, showing that

both methods reduced misfits with observational data to similar extents, but the descent method could not consistently identify40

the same set of parameters; this outcome was attributed to under-determinism of the model. Athias et al. (2000) used TSEs

to compare deterministic trust region, simulated annealing, and genetic algorithms, finding that the genetic algorithm was

the most reliable. Given the overall success of genetic and evolutionary algorithms, Mattern and Edwards (2017) compared

four evolution-based optimization algorithms to calibrate two BGC models in a 3D modeling framework. All of the tested

algorithms improved model results, even when truncating the optimization at roughly 100 model evaluations, but the artificial45

bee colony using differential evolution (a global, gradient-free method) performed the best.

Despite their successes, however, global and gradient-free methods can be prohibitively computationally expensive when

estimating parameters in high-dimensional BGC models coupled to physics-based representations of ocean mixing across

multiple ocean locations. In some studies, the number of parameters estimated has been reduced to control the computational

cost. For example, Kim et al. (2021) tracked 11 state variables in a BGC model with 72 parameters, but only 12 of the model50

parameters were ultimately estimated. This study also controlled cost by performing the estimation for a single site near the

West Antarctic Peninsula. Attempts have been made to perform parameter estimation across multiple sites, where the number

of estimated parameters in each study was small (on the order of 10 parameters or less). Some studies used the optimized

models to compare dynamics at contrasting sites (Ward et al., 2013; Kidston et al., 2011), while others tested the ability of

BGC models to simultaneously represent different marine ecosystems (Hurtt and Armstrong, 1999; Friedrichs et al., 2007) or55

a larger region such as the North Atlantic (Schartau and Oschlies, 2003a).
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Further attempts to overcome the computational cost of BGC parameter estimation include the use of physics-based surro-

gate models that represent realistic ocean mixing at a substantially reduced cost compared to 3D time-resolved simulations.

For example, Kuhn and Fennel (2019) ran an ensemble of 1D models as a surrogate for a 3D simulation. This approach was

used to calibrate and then compare three BGC models. The surrogate and full models produced similar errors with respect to60

observational data. The surrogate model recovered the average seasonal surface chlorophyll, and the BGC model implementa-

tion including temperature dependence was able to perform better across the target region. By contrast, the most complex BGC

model implementation was not able to represent variations in community structure across the region, making it a poor choice

for application as a regional model. As an alternative to 1D surrogates, Kwon and Primeau (2006) used an off-line transport

model developed from time-averaged velocity and diffusivity fields coupled to a BGC model to calculate phosphate equilib-65

rium distributions. Using phosphate data with a gradient-free optimization algorithm, only one parameter could be constrained.

In a follow-up study, Kwon and Primeau (2008) examined carbon and alkalinity, but employed the same biophysical model.

The transport matrix method has also been used to represent average advection processes in a computationally efficient manner

(Kriest et al., 2017; Kriest, 2017; Sauerland et al., 2019).

Ultimately, while previous attempts have been made to calibrate large BGC models, to simultaneously represent multiple70

sites, and to use physics-based surrogate models, the present study is the first where these three challenges are addressed

simultaneously. In particular, we outline a framework for estimating parameters in a high-dimensional BGC model across a

range of ocean conditions, using a 1D model for vertical ocean mixing. We demonstrate the method for the 17-state-variable

BGC Flux Model presented in Smith et al. (2021), which has 51 uncertain parameters. The parameter values provided in Smith

et al. (2021) are taken as the baseline parameters in the present study, and the success of the proposed parameter estimation75

method is determined by the extent to which we are able to improve model agreement with observational data, as compared to

the baseline model. Using the 1D Princeton Ocean Model (POM1D) to represent vertical mixing (Mellor and Yamada, 1982;

Bianchi et al., 2006), we attempt to simultaneously match observational data for multiple state variables at two subtropical

locations; namely, the sites of the Bermuda Atlantic time-series study (BATS; Steinberg et al., 2001) and the Hawaii Ocean

time-series study (HOTS; Karl and Lukas, 1996). Because of the increased computational requirements imposed by the 1D80

mixing model, we focus primarily on computationally efficient gradient-based local optimization methods but still retain an

initial global search to determine several regions of the parameter space in which to perform the local optimizations. The

resulting framework is thus the first to combine both global and local methods in the context of a physically realistic, multi-

site, multi-variable parameter estimation for high-dimensional BGC models.

This paper provides a description of the proposed methodology for estimating model parameters in Section 2. Section 385

provides a description of the model and physical scenarios used to test the optimization routine. Section 4 includes the results

of a TSE at the North Atlantic site and outlines the results of parameter estimations for the North Atlantic site, the Pacific site,

and the two sites simultaneously. Finally, conclusions and a discussion of future work are included in Section 5. An appendix

provides a discussion of the choice of state variables used during the optimization, the effects of different objective functions,

and increasing levels of data sparsity.90
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2 Parameter Estimation Method

2.1 Problem definition

In the present study, we treat BGC model parameter estimation as an optimization problem, where we seek to minimize the

error between observational data and the coupled BGC and vertical mixing model. We thus define a generic objective function,

J , corresponding to a particular choice of model parameters, c, as the weighted sum of model error over the model state95

variables (e.g., phytoplankton, zooplankton, and nutrients) and ocean sites as

J (c) =
Ns∑

i=1

Nv∑

j=1

Πijδij(c) , (1)

where Ns is the total number of sites, Nv is the total number of state variables, Πij is a matrix of weights, and δij(c) is a

function that describes the misfit with observational (or other reference) data for the jth state variable and ith ocean site. In the

optimizations performed in this study, we use equal weights Πij such that none of the target sites or variables are prioritized100

over others during the optimization. However, these weights can be adjusted as desired with no impact on the applicability of

the method.

There are many possible ways to define the error function δij(c), although herein we primarily use a normalized error based

on the root mean squared difference (RMSD) between the model and observational data. In Appendix A, we consider the

effect of different choices of δij , revealing little difference between the optimized results for the functions examined. The105

RMSD-based error function is given by

δij(c) =
1

σ
(obs)
ij

{[
V

(obs)
ij (x, t)−Vij(x, t;c)

]2
}1/2

, (2)

where σ
(obs)
ij is the standard deviation of the observational state variable field V

(obs)
ij (x, t) over all times and spatial locations,

Vij(x, t;c) is the corresponding modeled state variable field for parameter vector c, and (·) denotes an average over time and all

available spatial dimensions. We demonstrate the parameter estimation method using time-resolved 1D (i.e., depth-dependent)110

observational and simulation data. However, the method can be readily extended to higher dimensional data sets and we thus

leave the presentation as general as possible in the description of the approach.

Given the objective function in Eq. (1), we pose the parameter estimation problem as a constrained minimization of J (c),

namely

mincJ (c)

subject to cmin ≤ c≤ cmax,
(3)115

where cmin and cmax are vectors of the minimum and maximum allowable values of c, respectively. The final outcome of the

estimation approach is a set of parameters, denoted copt, that minimizes the error over all state variables and ocean locations.
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Figure 1. Schematic showing the coupling between DAKOTA, BFM17, and POM1D. The schematic shows observational data from BATS

and the Bermuda testbed mooring, although data from HOTS are also used in the present study.

2.2 Optimization method

We use the open-source numerical analysis library DAKOTA (Adams et al., 2019) to solve the optimization problem defined

in Eq. (3). The modular nature of DAKOTA provides a flexible framework for coupling an arbitrary model to a range of120

different numerical optimization algorithms, which the user can select and manage using control inputs. The modular structure

of DAKOTA extends to the way in which it interacts with models, which are effectively treated as ‘black boxes.’ That is, the

user provides an interface that transfers the test parameters to the model, performs the simulation, and returns the objective

function value to DAKOTA. Since the optimization algorithm does not have to be integrated into the model, interfacing the two

is simple and non-invasive. The black-box approach is also ideal because DAKOTA contains various optimization strategies.125

Simply by editing an input file, we are able to use different optimization algorithms with little to no alteration of the model

code.

Figure 1 provides a schematic of the coupling between DAKOTA and the biophysical model used to demonstrate the

present parameter estimation approach (the model is described in Section 3). The dashed line in the schematic emphasizes

that DAKOTA and the model do not interact directly; rather, the two are coupled through an interface script. An input file130

tells DAKOTA which numerical optimization tool to employ. DAKOTA produces a set of parameters to be tested and then

runs the interface script. The interface script interprets the parameter values from DAKOTA and formats them appropriately

for the model, which is then run. The simulation data is compared to the reference data to calculate and output the objective

function. DAKOTA reads the output and uses the data in its analysis routine, which continues to produce new parameter values
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until an optimal solution is found, according to user-specified convergence criteria. Parameter values are input to DAKOTA135

as normalized values c̃ = (c− cmin)/(cmax− cmin), such that 0≤ c̃≤ 1. This normalization prevents the applied optimization

algorithms from weighting parameters based on the relative magnitudes of parameter values. The normalized values are then

re-scaled when the interface script interprets the DAKOTA output and sets up the model input files.

Leveraging the flexibility inherent in DAKOTA, we perform the parameter estimation using a hybrid optimization approach

that incorporates both global (i.e., gradient-free) and local (i.e., gradient-based) methods. This hybrid approach is necessary to140

estimate a large number of uncertain parameters in complex BGC models while minimizing the required number of simulations,

which can become expensive when the BGC model is coupled to a single- or multi-dimensional physical model and applied to

various ocean locations. In total, there are three distinct steps in the present approach:

1. We randomly sample the parameter space Nrandom times, run the biophysical model for each choice of parameters and

evaluate the objective function J for each run. Because each of the model simulations is independent, this step can be145

easily parallelized and a large number of randomly selected parameter sets can be tested. The choice of Nrandom will

typically depend on the available computational resources, particularly for high-dimensional (in parameter space) BGC

models.

2. We sort the Nrandom randomly sampled simulations based on the final values of J and use the parameter values from the

Ntop best cases to initialize a series of local gradient-based optimizations. The choice of Ntop depends on the availability150

of computational resources as well as how quickly the values of J increase when the Nrandom simulations are sorted.

3. We compare the final objective function values after gradient-based optimization for the Ntop cases to determine a final

set of parameters that gives the best agreement with observational data. The resulting best parameters are the final output

of the parameter estimation method.

This hybrid multi-step approach combines the advantages of a global search with the computational speed-up enabled by a local155

gradient-based optimization. The initial global search does not guarantee that the method finds the global optimum. However,

as we will show in Section 4, the method does provide good agreement between model results and multi-site observational

data for a demonstration case with a 17-state-variable BGC model and two ocean locations. This provides confidence that the

approach will also improve the agreement of other high-dimensional BGC models.

To implement the first step of the method in DAKOTA, we used the Latin hypercube sampling algorithm to perform an160

efficient global search. For the gradient-based optimization in step two, a range of possible methods is available in DAKOTA.

After testing various such methods, including the conjugate gradient method, we chose the quasi-Newton (QN) optimization

algorithm included in the Opt++ library within DAKOTA. This is a C++ class library that uses object-oriented programming

for nonlinear optimization (Meza et al., 2007). The QN algorithm reliably and efficiently converged to optimized solutions.

Similar to the ecosystem parameter estimation study by Matear (1995), we found that the conjugate gradient method failed to165

converge efficiently. Based on results from test cases with smaller parameter sets (starting with five parameters), we attributed

this slow convergence to excessively small steps required by the orthogonality constraint in shallow and elongated regions
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within the objective function space. Depending on the complexity and shape of the objective function space, it is possible that

the conjugate gradient method may be feasible in other BGC model parameter estimations and the technique should not be

discounted altogether.170

3 Biophysical Model and Physical Scenarios

3.1 Model description

We demonstrate the parameter estimation method described in the previous section with a BGC flux model that has 17 state

variables and 51 free parameters, referred to as BFM17 (Smith et al., 2021). This model is a reduced implementation of the 56-

state-variable BGC flux model, denoted BFM56 (Vichi et al., 1998, 2003, 2007). We couple BFM17 to POM1D to represent 1D175

depth-dependent physical mixing processes in the open ocean. A detailed description of the resulting coupled model, referred

to as BFM17+POM1D herein, has been outlined in detail by Smith et al. (2021). Here we provide a summary of relevant model

details for the present work.

Figure 1 provides a schematic of the coupling between BFM17 and POM1D, where the total time rate of change of BGC

state variables, Aj , at a given ocean location depends on both physical and biological processes according to180

∂Aj

∂t
=−

[
W + WE + v(set)

] ∂Aj

∂z
+

∂

∂z

(
KH

∂Aj

∂z

)
+

∂Aj

∂t

∣∣∣∣
bio

. (4)

The first term on the right-hand side represents the vertical advection of tracers, which is parameterized by imposing a general

circulation vertical velocity profile, W , and an eddy velocity profile, WE . The sinking of biological material is included as

a constant advective velocity, v(set). The second term on the right-hand side of Eq. (4) represents transport by small-scale

turbulent diffusion, which is parameterized using the vertical diffusivity, KH , calculated by POM1D. The final term is the185

time rate of change of Aj from BGC processes, as determined from BFM17 using imposed temperature and salinity profiles

corresponding to a particular site, as well as using data for the photosynthetically available radiation. Following the simulation

of BFM17 and POM1D, the coupler uses the velocities, vertical diffusivity, and the BGC time rate of change to determine the

total rate of change of the 17 state variables in BFM17.

Both BFM17 and its larger precursor BFM56 use a chemical functional family (CFF) approach to model the marine ecosys-190

tem (Vichi et al., 1998, 2003, 2007). This approach provides a framework for easily controlling the complexity and specificity

of the model by implementing different sets of phytoplankton, zooplankton, and nutrient groups. Each CFF is represented as a

vector where each element is a constituent component concentration corresponding to a state variable. BFM17 was simplified

to be a general, but computationally cheaper, model that retains the essential BGC processes for modeling a phytoplankton

spring bloom (Smith et al., 2021). It is intended for future 3D simulations of upper, open-ocean dynamics at small scales, for195

example using large eddy simulations (Smith et al., 2016, 2018).

As described in more detail in Smith et al. (2021), BFM17 includes eight CFFs in total, comprising living organic, non-living

organic, and inorganic groups. The two living functional groups (LFGs), phytoplankton, Pi, and zooplankton, Zi, represent

generic groups modeling the average community behavior of their respective populations. Dissolved organic matter, R
(1)
i ,
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Figure 2. Schematic of the 17 variables included in BFM17 as well as the interactions between the variables (indicated by red text). The

schematic is taken from Smith et al. (2021).

and particulate organic matter, R
(2)
i , are included as non-living organic CFFs. These four CFFs each have three components200

(indexed by subscript i), corresponding to the constituent elements carbon, nitrogen, and phosphorous (i = C, N, or P, re-

spectively). The concentration of chlorophyll is included as an additional state variable for the phytoplankton LFG due to the

general interest in phytoplankton chlorophyll, the variable ratio to phytoplankton carbon concentration in the model, and the

available observational data. The model includes three inorganic nutrients: phosphate, nitrate, and ammonia (denoted N (1),

N (2), and N (3), respectively). Each nutrient only has a single state variable for its respective constituent component (P, N, and205

N for phosphate, nitrate, and ammonia respectively). The same is true of O, which is made up only of oxygen and is the only

tracked dissolved gas.

Figure 2 shows the 17 state variables in BFM17 and illustrates fluxes of C, N, and P as parameterized in the model; Appendix

B provides a more detailed description of the included processes. Table B1 in the appendix describes the 47 BGC parameters

used in BFM17. Oxygen, phosphate, nitrate, and ammonia at the bottom of the domain are relaxed to observed concentrations;210

the four relaxation parameters, also included in Table B1, are included in the estimation of BFM17 parameters. The combined
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set of 51 parameters is thus the complete set to be estimated by the method outlined in Section 2. Smith et al. (2021) manually

adjusted the ‘baseline’ parameter values in these tables to provide good agreement with data from BATS (Steinberg et al.,

2001). Our objective in the present study is to determine new parameter values that improve agreement with observational data

at both the BATS and HOTS locations (Karl and Lukas, 1996).215

The physical mixing model, POM1D (Blumberg and Mellor, 1987), uses vertical density profiles determined from observed

temperature and salinity profiles to calculate the temporal evolution of horizontal velocities, the turbulent kinetic energy, and

the mixing scale length, as described by Smith et al. (2021). The model then calculates the vertical turbulent diffusivity,

KH , included in the second term on the right-hand side of Eq. (4). The model uses the second-order turbulent closure model

proposed by Mellor (2001), which is based on the model developed by Mellor and Yamada (1982) for the upper ocean.220

3.2 Physical scenarios

We configured the coupled BFM17+POM1D biophysical model to simulate seasonal phytoplankton bloom dynamics mea-

sured at the BATS (Steinberg et al., 2001) and HOTS (Karl and Lukas, 1996) locations. Forcing and comparison data derive

from monthly climatologies of BATS and HOTS observational data for the upper 150 m of the ocean to filter out interannual

variability. At both sites, we assumed a 360-day climatological year with 12 months and 30 days per month. High-frequency225

forcing profiles were derived via interpolation of the monthly averaged observational data.

The observational state variables, V
(obs)
ij (x, t), used in the error function, Eq. (2), have 150 discrete vertical values and 12

monthly averages. The corresponding model values, Vij(x, t), were obtained by monthly averaging the BFM17 state variables

Aj(x, t) at each of the ocean locations; the BATS data corresponds to V1j and the HOTS data corresponds to V2j .

3.2.1 Bermuda Atlantic time-series study (BATS)230

The mid-Atlantic implementation of BFM17+POM1D is based on observations from BATS and the Bermuda testbed mooring.

Smith et al. (2021) discussed this implementation extensively. The observational data and model results for BATS are shown

in Fig. 3. Here we compare five variables: phytoplankton chlorophyll, oxygen, nitrate, phosphate, and total particulate organic

nitrogen (PON). The last of these variables, PON, is calculated as the sum of all nitrogen species from particulate organic

sources as235

PON = PN + ZN + R
(2)
N . (5)

In our model, the organic sources of nitrogen include phytoplankton, zooplankton, and non-living particulate organic matter,

corresponding to each of the terms on the right-hand side of Eq. (5). While Fig. 3 also includes model results after performing

parameter estimations using the method described in Section 4, here we will only discuss the initial comparison between

observational data (Fig. 3a) and the Smith et al. (2021) baseline implementation of BFM17 (Fig. 3b).240

Observations collected at BATS reveal substantial seasonal variability in chlorophyll, while dissolved oxygen, nitrate, phos-

phate, and particulate organic nitrogen exhibit relatively uniform concentrations year-round (Fig. 3a). The seasonal climatology

of chlorophyll measured at BATS shows a spring bloom that manifests most strongly in the upper ∼100 m of the water col-
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Figure 3. Phytoplankton chlorophyll (Pchl), oxygen (O), nitrate (N (2)), phosphate (N (1)), and particulate organic nitrogen (PON) (columns

from left to right) for the observational data from BATS (row a) and model results: the baseline parameters defined in Smith et al. (2021)

(row b), the parameters from the single-site parameter estimation (row c), and the parameters from the multi-site parameter estimation (row

d). All data are shown as monthly-averaged depth profiles of state variable concentrations.
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umn in February, followed by elevated chlorophyll concentrations in the subsurface region (∼50-150 m) through the summer

months (Fig. 3a). Oxygen has a near constant concentration from January through May, but during the fall a subsurface max-245

imum develops between ∼25 m and 100 m. Nitrate and phosphate are confined to the bottom of the domain, while PON is

confined to the upper portion of the water column with a slight deepening in the winter months.

Figure 3b shows that the baseline model phytoplankton chlorophyll results agree with the winter mixing and subsequent

spring bloom in the observational data (Smith et al., 2021). The baseline model also captures the subsurface maximum of

chlorophyll at roughly 100 m throughout the year. However, compared to the observational data, the baseline model over-250

predicts chlorophyll concentrations and has less vertical spread in the phytoplankton community through most of the year.

The model also underestimates oxygen concentrations throughout the water column. The model data for nitrate and phosphate

agrees with the observations fairly well, but with differences in the concentration magnitudes. Baseline model concentrations

for PON are significantly higher than the observational data.

In summary, while the general bloom dynamics at BATS are captured by the baseline implementation of BFM17 from Smith255

et al. (2021), there is clearly room for improvement. Most notably, chlorophyll, oxygen, and PON model results could be

improved, and these will be primary optimization targets for the parameter estimation method.

3.2.2 Hawaii ocean time-series study (HOTS)

A contrasting subtropical Pacific site was implemented in BFM17+POM1D using available observational data from HOTS.

Figure 4a shows the observational data and Fig. 4b shows BFM17+POM1D results using the baseline model parameters from260

Smith et al. (2021). This figure also shows the fields from the single-site model calibration and the multi-site calibration, which

will be discussed in Section 4. As with the BATS location, we focus on phytoplankton chlorophyll, oxygen, nitrate, phosphate,

and PON. The BFM17 parameter values in Smith et al. (2021) were adjusted manually to increase agreement with observational

data from BATS. There is thus no a priori expectation that the parameters from Smith et al. (2021) will give good agreement

between BFM17+POM1D and observational data at the HOTS location.265

Observations collected at the HOTS location show fairly uniform chlorophyll, nitrate, phosphate, and PON concentrations

across the seasonal cycle (Fig. 4a). Throughout the year, phytoplankton chlorophyll is elevated in the subsurface region in the

upper ∼100 m. Oxygen has a maximum at the surface January through March, with a subsurface maximum developing May

through November between ∼50 m and 100 m. Nitrate and phosphate are confined to the bottom of the domain with nutrient

fluxes increasing from November through February. PON concentrations are highest in regions of the water column where270

phytoplankton and zooplankton thrive. By contrast to trends at BATS, PON concentrations increase from summer to fall at

HOTS.

The baseline model predicts similar temporally uniform distributions of chlorophyll, nitrate, phosphate, and PON as the

observations (Fig. 4b). However, the model substantially overestimates the magnitude of the subsurface chlorophyll maximum,

and places it at too shallow a depth (Fig. 4b). Results for oxygen also substantially differ between the model and observations.275

In particular, the observations show that oxygen enters the domain through the surface during winter and is mixed to lower

depths throughout the year. The model, by contrast, predicts high oxygen concentrations very close to the surface. The model
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Figure 4. Phytoplankton chlorophyll (Pchl), oxygen (O), nitrate (N (2)), phosphate (N (1)), and particulate organic nitrogen (PON) (columns

from left to right) for the observational data from HOTS (row a) and model results for: the baseline parameters defined in Smith et al. (2021)

(row b), the parameters from the single-site parameter estimation (row c), and the parameters from the multi-site parameter estimation (row

d). All data are shown as monthly-averaged depth profiles of state variable concentrations.

12

https://doi.org/10.5194/gmd-2023-107
Preprint. Discussion started: 15 June 2023
c© Author(s) 2023. CC BY 4.0 License.



severely over-predicts nitrate concentrations throughout the domain, while modeled phosphate concentrations are closer to

the observations (but still generally under-predicted). PON has slightly higher concentrations between 25 m and 75 m in the

observational data, but the model over-predicts PON concentrations throughout the upper 100 m of the water column.280

In summary, Fig. 4 shows that the baseline model generally agrees with the observational trends in phytoplankton chloro-

phyll, nitrate, phosphate, and PON, but the concentration magnitudes are over- or under-predicted to varying degrees. Both the

trends and concentrations in the oxygen results differ substantially between the baseline model and observational data. Overall,

these results indicate that the baseline BFM17 parameter values from Smith et al. (2021) are not well suited for the HOTS

location. While this may be expected given that the baseline parameters were manually tuned to ensure reasonable agreement285

with BATS observations (Smith et al., 2021), it motivates the search for new model parameters that simultaneously improve

agreement with observations at the BATS and HOTS locations.

4 Parameter Estimation Results

4.1 Twin simulation experiment (TSE)

To verify the effectiveness of the parameter estimation method in reproducing known parameter values, we perform a TSE290

using model-generated fields from BFM17+POM1D as reference ‘observational’ data. The reference model data are generated

using baseline parameter values (Smith et al., 2021) (summarized in Table B1). The objective of the TSE is to recover as many

of the known parameters as possible using only state variable data from the model. For the reference run of the model, we

simulated 30 days of data and stored daily values of all 17 state variables. We began the parameter estimation from initial

parameter values perturbed upward by 10% from the baseline values, and we set the upper and lower parameter value bounds295

(i.e., cmax and cmin, respectively) to ±25% of the baseline values.

Figure 5 shows the combined results of the TSE and sensitivity analysis. Of the 51 total parameters in BFM17, approximately

32 were recovered to within 5% of their respective baseline values. Not all light and environmental parameters were fully

recovered. However, the environmental parameters tend towards their nominal values, as do the phytoplankton parameters that

were not fully recovered. Only some of the zooplankton parameters were successfully optimized, while the others did not300

change in value. All but one of the non-living organic parameters were successfully recovered.

To assess why certain parameters were not fully recovered, we performed a sensitivity analysis. For this analysis, we ran

the coupled biophysical model with each parameter perturbed ±5% from the nominal value, excluding the parameters that

exceed their respective bounds when perturbed. Five parameters fell into this category; δZ,P and h
(O)
N were perturbed down

5% and ζCO2 , ζN(1) , and ζN(3) were perturbed up 5%. Parameters were compared using a sensitivity metric S(pi), defined305

as the maximum objective function evaluation between the two perturbation cases for each parameter. The sensitivity factors

were normalized by the maximum sensitivity factor to determine the relative importance of each parameter Ŝ(pi). As shown

in Fig. 5, most of the parameters not recovered have a relative importance less than 0.01, or sensitivities less than 1% of the

most sensitive parameter, which is the specific affinity constant for phosphorous a
(P)
P .
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Figure 5. Results of the 51-parameter TSE and a single-perturbation sensitivity analysis. The TSE results show parameter values over the

course of the optimization. Initial and final values are indicated by a circle and diamond respectively, and different colors indicate different

parameter types (as noted in the legend at the bottom). Relative sensitivities are plotted using the bar graph.

These results indicate that the parameter estimation method was successful in recovering the most sensitive parameters, while310

the parameters not fully recovered correspond to the least sensitive parameters. The optimizer and model correctly interface,

and the optimization method performs as expected. While these results may suggest that the least sensitive parameters could

be excluded from the subsequent calibration studies, redoing the sensitivity study with our standard objective function reveals

larger relative importance values for the full set of parameters. It is thus difficult to justifiably eliminate parameters from the

subsequent calibration studies.315

4.2 Single-site parameter estimations

For the single-site parameter estimations at both the BATS and HOTS locations, we used the method described in Section 2

with Nrandom = 25,000 random samples in the initial global search. We then began the local gradient-based optimizations from

the Ntop = 20 best samples. The value for Nrandom was based on the availability of computational resources, while the value

of Ntop was based on the rate at which the error increased from the best case. In particular, by the twentieth-best parameter320

set, the error increased by 19–30% among all randomly sampled cases at both locations. We thus assumed that Ntop = 20 runs

were sufficient as the increase in error was greater than ∼20%. The choices of Nrandom and Ntop are problem- and resource-

dependent and the present values should not be taken as fundamental to the method. Since we are treating the model calibration

as a constrained optimization problem, parameters were only allowed to vary in the ranges included in Table B1.
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Table 1. Normalized RMSD values for the parameter estimation studies. The five target fields have normalized RMSD values for the model

runs with the nominal and optimized parameter sets.

BATS HOTS

Target field Baseline case Single site opt. Multi-site opt. Baseline case Single site opt. Multi-site opt.

Chlorophyll 1.84 0.49 0.76 2.81 0.82 0.63

Oxygen 5.48 1.78 2.28 27.20 1.92 1.77

Nitrate 0.75 0.35 0.41 130.47 0.55 0.50

Phosphate 0.82 0.33 0.38 1.43 0.44 0.68

PON 5.80 0.37 0.58 7.54 0.93 0.58

Total 14.69 3.32 4.41 169.45 4.66 4.16

4.2.1 Bermuda Atlantic time-series study (BATS)325

Figure 3c shows that the final model fields after single-site parameter estimation at the BATS location are substantially closer

to the observational data than the baseline model. This is supported quantitatively in Table 1, where the total RMSD between

the model and observational data is nearly a fifth that of the baseline model. The RMSD also decreased for each target field

individually, with the greatest improvement in PON, where the RMSD improved by an order of magnitude.

Improvements from the baseline to the calibrated model are reflected in Fig. 6, which shows fields of the normalized absolute330

differences between the model and observational data. The absolute difference is normalized by the standard deviation and

provides a field-based representation of the different variables used to compute the objective function. Figure 6 shows that the

calibrated model has a smaller error than the baseline model at nearly all depths and for all months.

Taken together, Figs. 3 and 6 show that the single-site calibrated model more accurately captures the magnitude of the

subsurface maximum in chlorophyll, without changing the overall seasonality of phytoplankton chlorophyll. The calibrated335

model has a generally higher concentration of oxygen throughout the domain, improving agreement with the observations.

There is also improved agreement for nitrate and phosphate due to a reduction in the predicted concentrations throughout

the domain. The largest differences in nitrate, during fall and winter, are decreased in the calibrated model results, but there

is a slight increase in disagreement at the bottom of the domain from April through September. The decrease in phosphate

concentrations leads to smaller differences throughout the water column in the eight months of the year. For September through340

December, there is still improved agreement above ∼125 m, but below that there is a slight increase in normalized differences.

Concentrations of PON in the upper water column are substantially reduced compared to the baseline results, leading to

significantly better agreement with the observational data.

These results show that the parameter estimation method outlined in Section 2 was successful in improving the agreement

between BFM17 and observational data at BATS. This is notable because the baseline model was itself manually tuned to give345

good agreement with the observational data (Smith et al., 2021), and the present automated method was able to produce even
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Figure 6. Normalized absolute differences between the monthly averaged field data from model runs and the corresponding observational

data from the BATS site. The top row corresponds to the baseline parameter set from Smith et al. (2021), the middle row corresponds to

parameters resulting from the single-site calibration, and the bottom row corresponds to parameters from the simultaneous calibration at the

BATS and HOTS locations. The absolute difference values are normalized by the standard deviation of the corresponding observational field.

better agreement. Table B2 in the appendix provide the parameter values obtained for the single-site model calibration at the

BATS location.

4.2.2 Hawaii Ocean time-series study (HOTS)

For the parameter estimation at the HOTS location, Fig. 4 shows that the agreement between the model and observational data350

increased substantially for all target fields. Table 1 shows that the RMSD improved by a factor of between three (for phosphate)
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Figure 7. Normalized absolute differences between the monthly averaged field data from model runs and the corresponding observational

data from the HOTS site. The top row corresponds to the baseline parameter set from Smith et al. (2021), the middle row corresponds to

parameters resulting from the single-site calibration, and the bottom row corresponds to parameters from the simultaneous calibration at the

BATS and HOTS locations. The absolute difference values are normalized by the standard deviation of the corresponding observational field.

and over 236 (for nitrate). In total, the overall agreement with the observational data increased by a factor of nearly 36 from

169.45 for the baseline model to 4.66 for the calibrated model.

The difference fields in Fig. 7 further emphasize the improvement in agreement between the model and observational data

at the HOTS location. For chlorophyll, there are large errors in the baseline model between 50 m and 100 m depths that355

nearly disappear in the calibrated model. The baseline model overestimates the subsurface maximum concentrations while

underestimating the depth of the subsurface maximum. Both of these issues are resolved as the calibrated parameters result

in lower chlorophyll concentrations and a deepening of the subsurface maximum. Although the calibrated model generally
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produces better agreement for chlorophyll, the depth of the modeled subsurface maximum still shows more seasonality than is

observed in the observational data. The subsurface maximum shoaled to above 100 m in the late summer and fall.360

The normalized absolute differences for oxygen in the second column of Fig. 7 show notably improved agreement with

observational data. As seen from a comparison of the fields in Fig. 4, the baseline model under-predicts oxygen, with the

highest oxygen concentrations confined to the top of the domain. The calibrated model produces a more representative set of

oxygen concentrations, but the high oxygen concentrations remain between 50 m and 100 m year round. The annual cycle in

the observational data instead has high oxygen concentrations at the surface in the winter which then deepen such that there is365

a subsurface maxima near 75 m during the late summer and into the fall.

The calibrated model gives substantially improved agreement with nitrate observations, with the normalized RMSD decreas-

ing from 130.47 for the baseline model to 0.55 for the calibrated model. The calibrated model also gives more accurate phos-

phate concentrations, with an annual cycle that includes more seasonality. The phosphate has increased bottom concentrations

from November through January, similar to the higher concentrations for November through March seen in the observational370

data. Similar to all other fields, the calibrated model significantly improves predictions of PON, whereas the baseline model

overestimates the observations by a factor of approximately three.

Overall, the parameter estimation method produced significantly better agreement with the observational data at the HOTS

location. Moreover, we were able to produce generally similar errors at the BATS and HOTS sites. Table B2 provides calibrated

model parameters for the single-site estimation using data from HOTS.375

4.3 Multi-site parameter estimation

We now use the parameter estimation method to calibrate parameters in BFM17 using observational data from the BATS

and HOTS locations simultaneously. As with the single-site estimations, we performed an initial search of the parameter

space using Nrandom = 25,000 samples and retained the Ntop = 20 best parameter sets to initialize subsequent quasi-Newton

optimizations. The objective function for the multi-site parameter estimation was the summed normalized RMSD between380

model results and observational data for both sites. The optimization was performed without any weighting of the normalized

error terms. That is, Πij from Eq. (1) was unity for all i and j. The fields with the most error therefore drive the optimization

without any a priori determination of the relative importance of the fields or sites.

The resulting model fields for the BATS location from the multi-site calibration are shown in Fig. 3d, with the normalized

differences between the model fields and observational data in Fig. 6c. Figures 4d and 7c show the resulting fields and dif-385

ferences for the HOTS location, respectively. Table 1 presents the field-specific and total normalized RMSD values for the

calibrated model results.

Overall, the agreement between the multi-site calibrated model and the observational data at the BATS and HOTS locations

is quite good, with errors comparable to results from the single-site estimations. The normalized combined model error was

184.14 for the baseline model, lowering to 8.57 after model calibration. At the BATS site, predictions for all of the target fields390

are closer to the observations for the multi-site calibrated model than the baseline model. For the HOTS site, the set of estimated
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parameters from the combined calibration improved agreement for all five target fields when compared to the baseline model

and four of the fields when compared to the single-site optimization.

The multi-site calibration results have slightly larger errors than the single-site optimization at the BATS location. Figure 3

shows that the chlorophyll subsurface maxima are deeper in the water column than in the observational or single-site calibration395

data. The vertical skew also differs in the community structure where concentrations are dispersed further below the subsurface

maxima, which is not observed in the observational data or the single-site calibrated model results. Oxygen results display a

trend in the annual cycle similar to that observed in the single-site calibration, but concentrations in the subsurface maxima are

larger during the later part of the year. Nitrate and phosphate concentrations are decreased further in the multi-site calibration,

which produces larger differences at the bottom of the domain. Results for PON do not display the same build-up in particulate400

nitrogen in the beginning of the year, but generally have the same annual trend as the single-site calibration results.

Table 1 shows that the multi-site calibration results have similar error to the single-site optimization at the HOTS location,

with the multi-site results actually displaying a slightly smaller total error than the single-site results. This counter-intuitive

outcome is a by-product of the complexity of the 51-dimensional objective function parameter space, combined with the hybrid

nature of the parameter estimation method proposed here. In particular, local gradients in the objective function space differ405

from the single-site case when including reference data from both BATS and HOTS, in this case permitting the gradient-based

optimization to explore a broader region before reaching a convergence condition. Additionally, the initial random sampling is

an important first step in the proposed hybrid approach but does not guarantee that a global minimum has been found in the

objective function space. A larger number of initial random samples (i.e., larger Nsample) would allow the method to probe

new and potentially lower error regions of the objective function space, but we fixed this number at Nsample = 25,000 in the410

present tests.

For the multi-site HOTS results, four of the five target fields (i.e., chlorophyll, oxygen, nitrate, and PON) are in better

agreement with the observational data than the single-site results, with the only trade-off being increased error in phosphate.

Chlorophyll, as observed in Fig. 4d, has more vertical spread with a less intense gradient around the subsurface maximum

near 100 m, which is also true of the observational data. Oxygen results for the multi-site case have higher concentrations415

throughout the domain, but not to the same extent as in the single-site results. The annual cycle in nitrate, phosphate, and PON

are all similar to the observational data and the single-site results. In the nitrate and PON fields, lower predicted concentrations

than those in the baseline and single-site calibrated models improve agreement with the observational reference data. The

nitrate field, however, is underestimated at the bottom of the domain. Phosphate is the only field which, while still being better

than the baseline case, has increased error compared to the single-site calibration.420

Ultimately, although the present study serves primarily as a demonstration of the parameter estimation method, the parameter

values from the multi-site calibration, summarized in Table B2, can be taken as the standard parameters for the BFM17 model,

replacing the baseline parameters outlined in Smith et al. (2021) when the model is used at new locations or in upper ocean

process studies.
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5 Conclusions425

We have formulated and demonstrated a method for simultaneously estimating a large number of uncertain parameters in

complex BGC models, considering multiple state variables and ocean locations. The method is fundamentally based on numer-

ical optimization whereby the error is reduced between model and observational (or other reference) data. Both gradient-free

and gradient-based optimization techniques are incorporated into the method to provide a broad exploration of the parameter

space combined with the computational cost savings enabled by local gradient-based approaches. While the broad search and430

multiple local optimizations do not guarantee that the solution is a global minimum, they reduce the possibility of getting

artificially trapped in regions of the parameter space based on inaccurate initial guesses by the user, while still allowing us to

take advantage of the computational efficiency of gradient-based methods.

As a demonstration of the method, we estimated the 51 parameters of BFM17 (Smith et al., 2021) using a 1D parameteri-

zation of open-ocean vertical diffusion from POM1D. We performed the estimation using observational data from BATS and435

HOTS, both individually and together. In all cases, we were able to improve the model agreement with available observational

data, as compared to the baseline model parameters for BFM17 provided in Smith et al. (2021). The resulting optimized param-

eters, summarized in Table B2, provide a more general implementation of BFM17 for use at new ocean locations in the future.

That is, the parameter set determined during the multi-site optimization should be treated as the most globally applicable set

of BFM17 parameters and should therefore be used in any future studies involving BFM17.440

The present demonstration of the parameter estimation method is just one example of the many ways in which the method

can be configured. For example, given additional computational resources, a user may choose to expand the number of initial

random samples included in the gradient-free search of the parameter space or the number of subsequent gradient-based

local optimizations. Even for the relatively modest number of samples and local optimizations used here, we were able to

significantly improve model accuracy. In Appendix A, we explore the impact of other choices made in the method, including445

the use of only one state variable, alternative formulations of the objective function, and the omission of observational data,

finding that the parameter estimation results were generally quite similar for these different choices. In future studies, the

relative importance of the target fields or the relative confidence in the observed data can be used to weight the individual fields

against each other.

Finally, this study provides a method for determining the parameter values that provide the best possible fit to observational450

data, within the constraints of the dynamics represented by the BGC model itself. That is, the present method can be used to

calibrate model parameters such that the dynamics represented in the model are the cause for any remaining data misfit. Pre-

vious studies have shown how model calibration can be used to determine the required set of dynamics (Hurtt and Armstrong,

1996, 1999; Friedrichs et al., 2007; Bagniewski et al., 2011; Ward et al., 2013). For example, Ward et al. (2013) removed fluxes

between state variables by setting certain parameters to zero, thereby effectively determining not only the parameter values but455

also the model BGC pathways that could be excluded. In some studies, model calibrations that failed to sufficiently improve

model results helped to identify deficiencies in the BGC models being employed (Spitz et al., 1998; Fennel et al., 2001; Schar-

tau et al., 2001; Spitz et al., 2001; Schartau and Oschlies, 2003b). The models were either missing key BGC processes, such
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as key nutrient limitation or the bacterial loop, while others lacked fidelity in terms of the physical forcing. Application of the

present method to studies of the dynamics included in BGC models is an important direction of future research.460

Appendix A: Alternative optimization configuration choices

There are a number of different ways that the parameter estimation method can be configured, with different choices of variables

in the objective function, formulations of the objective function, and months included. In the following, we explore the effects of

each of these choices, with the understanding that the method outlined in Section 2 is intended to provide a general framework

that is easily reconfigured as desired.465

A1 Parameter estimation based on chlorophyll only

Due to the specific interest in phytoplankton as a primary producer affecting both the carbon cycle and the food web, we tested

single- and multi-site calibrations based exclusively on phytoplankton chlorophyll. Figure A1 shows the field results for this

study, comparing chlorophyll fields from the observations, the baseline model, and single- and multi-site model calibrations

based on five state variables (as in Section 4) and on chlorophyll only.470

At both locations, Fig. A1 shows that the chlorophyll-only calibration recovers the observations to an even greater extent

than calibrations based on five target fields. This improved agreement in chlorophyll is accompanied by reduced agreement

Figure A1. Phytoplankton chlorophyll (Pchl) for different optimization runs for the BATS and HOTS implementation of the model, top

and bottom row respectively. The chlorophyll data is shown as monthly-averaged depth profiles. The fields show optimized results against

observational data (first column) for the optimization case to compare having multiple objectives sites against optimizing only for chlorophyll.
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in the other fields (not shown here). As with the multi-variable results, we again see that the single-variable results improve

compared to the baseline model even when calibrating over two locations simultaneously.

The multi-site calibration results for chlorophyll show the way in which the parameter estimation method identifies pa-475

rameters that balance the system behavior of the targeted communities. Comparing the single-site and multi-site calibration

results, the predictions for the BATS location correspond to greater chlorophyll concentrations at depth, with suppression of

phytoplankton growth at the beginning of the year. By contrast, chlorophyll at the HOTS location is concentrated higher in the

domain with more seasonality and slightly higher concentrations. Ultimately, model results for one site are skewed towards the

behavior of the other site included in the calibration. Additional sites could be included in future work to obtain a more generic480

set of parameters.

A2 Alternative objective function formulations

We next examine the impact of changing the objective function in the parameter estimation method, specifically by varying the

original formulation of δij from Eq. (2). Here we confine the analysis to single-site calibrations at the BATS location and test

three alternative formulations of δij .485

The first alternative formulation multiplies the squared difference values by the reference values before being cube-rooted,

namely

δ
(A1)
ij (c) =

1

σ
(obs)
ij

{
V

(obs)
ij (x, t)

[
V

(obs)
ij (x, t)−Vij(x, t;c)

]2
}1/3

. (A1)

This particular form of δij is intended to weight more where BGC processes are active in the water column, as represented

by higher concentrations of the state variables. Here, the weighting is applied by multiplying by the reference field so that490

the average incorporates the magnitude of the difference as well as the magnitude of the target concentration. In the second

formulation, we modify the normalization factor on δij to obtain

δ
(A2)
ij (c) =





[
V

(obs)
ij (x, t)−Vij(x, t;c)

]2

[
V

(obs)
ij (x, t)−⟨V (obs)

ij (x, t)⟩
]2





1/2

, (A2)

where ⟨·⟩ denotes a time average. In this formulation, instead of normalizing with the standard deviation of all observational

data for a given field, the standard deviation is calculated at each spatial location (or depth, in the present 1D cases) relative495

to the time average only. This formulation accounts for the fact that the temporal variability in a given field can vary widely

with spatial location and the overall standard deviation σ
(obs)
ij may not be a good representation of the variability at a particular

location. Finally, the third formulation applies both modifications simultaneously. That is, the normalized error is calculated

using

δ
(A3)
ij (c) =

{
V

(obs)
ij (x, t)

[
V

(obs)
ij (x, t)−Vij(x, t;c)

]2
}1/3

{[
V

(obs)
ij (x, t)−⟨V (obs)

ij (x, t)⟩
]2

}1/2
. (A3)500
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Model results after parameter estimation using the alternative formulations of δij are shown in Fig. A2. Overall, the fields

are all very similar, as well as similar to the results from the original formulation of δij in Fig. 3. There are, however, differ-

ences in the predictions of phytoplankton chlorophyll and phosphate. Using the original formulation of δij , the phytoplankton

chlorophyll is mixed throughout the water column from January through March. As spring continues, there is a more strat-

ified structure with a subsurface maximum that is vertically symmetrical and has decreasing concentrations away from the505

maximum. This is the same behavior produced by the second alternative formulation in Eq. (A2), but the other two formula-

tions in Eqs. (A1) and (A3) broaden the region containing the subsurface maxima and break the vertical symmetry, with the

phytoplankton decreasing less rapidly below the location of the subsurface maximum.

In the case of both oxygen and nitrate, the fields produced by each of the formulations of δij are essentially the same.

There are small differences in the magnitude, but in terms of structure and concentrations, these differences are not significant.510

Phosphate, by contrast, is similar in that the structure of the calibrated fields is all the same, but the concentrations are less

accurate when compared to observational data. The two alternative formulations in Eqs. (A1) and (A3) do not sufficiently

decrease the field values leading to over-predicted concentrations in the upper portion of the domain.

The PON fields for all formulations of δij have the same general structure, vertically and annually. The PON vertical structure

increases from an initial value to some maximum at depth, after which the concentration begins to decrease. The gradient is515

sharper below the maxima. The two alternative formulations in Eqs. (A1) and (A3) predict the maxima higher in the domain

with a broader range of depths. The original formulation for δij and the alternative formulation in Eq. (A2) predict the PON

maxima to have a similar structure and depth as the chlorophyll subsurface maxima.

To compare the results quantitatively, Taylor diagrams with each of the alternative objective functions are shown in Fig. A3.

This diagram shows the normalized standard deviation, the normalized centered RMSD, and the correlation coefficient for520

model results against observational fields. The point corresponding to the oxygen results from the calibration with Eq. (A2)

is not shown here since it had a negative correlation coefficient of −8× 10−3. The diagram demonstrates that the original

formulation of δij produces results for each of the fields that are either better or on par with the alternatives, providing confi-

dence in this choice of δij and indicating that the improvements in model accuracy outlined in Section 4 are robust to different

formulations of the objective function.525

A3 Data sparsity

To examine the effects of data frequency on the parameter estimation method, we performed three additional calibrations at the

BATS location omitting data from two or more months during the parameter estimation (all three calibrations used five target

fields in the objective function). In the first case, we examined the importance of capturing the initiation of the spring bloom

by excluding all data for the months of February and March. This could be thought of as an experiment for data corruption530

considering the case where data from certain observational periods are unreliable and have to be excluded. In the next two

cases we test realistic, if non-ideal, observation strategies where data is (i) collected quarterly in February, May, August, and

November and (ii) only collected during the initialization of the Spring Bloom in February and March.
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Figure A2. Phytoplankton chlorophyll (Pchl), oxygen (O), nitrate (N (2)), phosphate (N (1)), and particulate organic nitrogen (PON)

(columns from left to right) for optimized results testing three alternative objective function formulations. The first (row a) tests using a

cubed root formulation instead of the standard squared root difference from Eq. (1). Next, (row b) we test using a depth-averaged standard

deviation instead of the standard deviation calculated using the entire time-depth field of the observational data. Finally, both changes to the

objective function are tested simultaneously (row c). All data are shown as monthly-averaged depth profiles of state variable concentrations.
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Figure A3. Taylor diagram comparing model results at BATS for phytoplankton chlorophyll (Pchl), oxygen (O), nitrate (N (2)), phosphate

(N (1)), and particulate organic nitrogen (PON) using parameter estimations with δij from Eq. (2), δ(A1)
ij from Eq. (A1), δ(A2)

ij from Eq. (A2),

and δ
(A3)
ij from Eq. (A3).

Figure A4 shows the resulting model fields after calibration. Oxygen, nitrate, phosphate, and PON fields all have consis-

tent trends with only small differences, even when compared to the original calibration result from Fig. 3c. Chlorophyll does,535

however, demonstrate a higher sensitivity to data sparsity and the observational strategy employed. This is seen in the signif-

icantly higher concentrations in the phytoplankton chlorophyll subsurface maximum throughout the annual cycle. There are

also higher concentrations throughout the water column, particularly in phytoplankton growth from January through April. The

increased activity corresponds to decreased temporal resolution.

The Taylor diagram in Fig. A5 further explores these results, comparing the standard single-site calibration study for BATS540

and each data sparsity case. Here we compare the models using the data set of the annual cycle for each of the target fields.

The oxygen result for the quarterly observation strategy is not included since it has a negative correlation coefficient, but if

plotted would be near the other oxygen results. The annual cycle for each of the five fields is represented to a similar level

by the calibrated results for each case. The major exceptions are chlorophyll and phosphate in the case that only includes the

spring bloom data. These fields have higher centered RMS error values and less representative standard deviations. It should545

be noted, however, that this calibration was based on data from only two of the twelve total months.

These results demonstrate that the annual cycle in the five target fields does not necessarily need to be observed on a monthly

basis for optimization results to improve the model fit to the physical trends. Including the full data set did, however, produce
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Figure A4. Phytoplankton chlorophyll (Pchl), oxygen (O), nitrate (N (2)), phosphate (N (1)), and particulate organic nitrogen (PON)

(columns from left to right) for optimized results testing the effect of excluding data on the recovery of the annual trend in target fields.

The data subset (row a) tests excluded the Spring Bloom data, February and March. Next, we test using quarterly observational data (row b).

Finally, we test the extreme case of only having observational data from the Spring Bloom during February and March (row c). All data are

shown as monthly-averaged depth profiles of state variable concentrations.

the most representative parameter set. The results also highlight the danger of using data that are too sparse. In the data sparsity

studies including and excluding the spring bloom, the spring bloom did not produce error measures consistent with the full550

data set.Calibrating using data only from the spring bloom led to good agreement between the included observational data

and model results, but this came at the expense of not being generally representative of the annual cycle. These conclusions

highlight the importance of matching the included data to the desired purpose of the optimized model and frequent—or at least

even—coverage of the desired dynamics.
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Figure A5. Taylor diagram comparing model results at BATS for phytoplankton chlorophyll (Pchl), oxygen (O), nitrate (N (2)), phosphate

(N (1)), and particulate organic nitrogen (PON) using parameter estimations with all observational data, excluding February and March (i.e.,

all data except the spring bloom), including only February, May, August, and November (i.e., quarterly data), and including only February

and March (i.e., only data from the spring bloom).

Appendix B: Description of BFM17555

Smith et al. (2021) provide a detailed description of BFM17, but here we outline the primary processes represented in the

model. Phytoplankton gross primary production results from the consumption of carbon dioxide, nitrogen, ammonia, and

phosphate during photosynthesis. Since carbon dioxide is treated as an infinite source, phytoplankton growth can only be

limited by either the availability of nitrogen, phosphorous, or light. The model parameters controlling the availability of light

are the first four parameters in Table B1. Phytoplankton losses include respiration, exudation, lysis (cell rupture), and predation560

by zooplankton. The metabolic activity of phytoplankton results in carbon losses during respiration. Following the breakdown

of sugar, carbon dioxide is released from the cell. Carbon is also lost via exudation when there is not enough nitrogen or

phosphorous for the carbon to be assimilated. In this case, the carbon is sent directly to the dissolved organic matter carbon

pool. Phytoplankton matter is also lost to lysis, which can result from virus penetration of the cell membrane. Lysis fluxes

matter to both the dissolved and particulate organic matter CFFs in terms of all three constituent components. Ultimately,565

the change in phytoplankton chlorophyll is calculated from the uptake of carbon by phytoplankton minus the losses from the

previously described processes. The quantity is regulated by the ratio of realized to potential rates of photosynthesis.
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The zooplankton LFG is treated as carnivorous and, consequently, the sole source of growth for the LFG is its predation

on phytoplankton. As carbon, nitrogen, and phosphorous are lost by phytoplankton from predation, all three constituent pools

increase for zooplankton. Zooplankton is a living organism so there are carbon losses resulting from respiration as part of the570

organism’s metabolic activity. The zooplankton losses resulting from egestion, excretion, and mortality are parameterized as

releases to the dissolved and particulate organic matter pools for all three constituent components. Nitrogen is also released to

ammonia while phosphorous is released to phosphate.

As noted, the non-living dissolved organic matter increases from phytoplankton losses due to lysis and releases from zoo-

plankton. The dissolved organic carbon also increases from phytoplankton exudation. Dissolved organic nitrogen can be lost575

as a result of phytoplankton uptake of nitrate and ammonium. Similarly, dissolved phosphorous can be lost as a result of phyto-

plankton uptake of phosphate. Non-living particulate organic matter has a more uniform behavior across the three constituent

components. In all cases, the particulate matter results from the lysis by phytoplankton and the release of organic matter from

zooplankton.

Instead of nonliving organic matter being recycled back to the inorganic nutrient pools through a bacterial loop, BFM17 uses580

a constant remineralization rate closure. Matter is cycled directly back to the inorganic nutrient pools based on the product of a

constant rate and the non-living organic matter concentrations. Carbon is also remineralized back to carbon dioxide, but since

the inorganic dissolved gas acts as a sink it is not being tracked in this model implementation.

Oxygen is the only dissolved gas that BFM17 explicitly tracks. Oxygen is introduced into the system via aeration of the

surface water resulting from wind forcing calculated with observational data. The production of oxygen by phytoplankton585

during photosynthesis is the only biological source of oxygen. Oxygen is consumed during phytoplankton and zooplankton

respiration as well as the recycling of non-living dissolved and particulate organic carbon to carbon dioxide. Oxygen is also

lost to nitrification, a process that converts ammonium to nitrate.

Phosphate, nitrate, and ammonia are consumed by phytoplankton. Phosphate and ammonia are replenished through the

release of phosphorous and nitrogen, respectively, by zooplankton. Phosphate and ammonia also receive matter from the590

remineralization of dissolved and particulate organic matter. Remineralization only returns nitrogen to the ammonium pool

from which the nitrate pool is replenished via nitrification. During nitrification, nitrogen from ammonia is combined with

oxygen.
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Table B1. List of BFM17 parameters controlling the marine ecosystem dynamics in the model.

No. Parameter Baseline value Units Range Description

Phytoplankton Parameters

1 εPAR 0.4 - 0.25–0.75 Fraction of photosynthetically available radiation

2 λw 0.0435 m−1 0.03–0.05 Background attenuation coefficient

3 cP 0.03 m2(mg Chl)−1 0.005–0.045 Chlorophyll-specific light absorption coefficient

4 c
R(2) 0.1×10−3 m2(mg C)−1 1.5×10−5–1.5×10−4 C-specific attenuation coefficient of particulate detritus

5 r
(0)
P

1.6 d−1 1.0–5.0 Maximum specific photosynthetic rate

6 bP 0.05 d−1 0.005–0.075 Basal specific nutrient-stress lysis rate

7 d
(0)
P

0.05 d−1 0.005–0.075 Maximum specific nutirent-stess lysis rate

8 h
(N,P)
P

0.1 - 0.005–0.15 Nutrient-stress threshold

9 βP 0.05 - 0.005–0.1 Excreted fraction of primary production

10 γP 0.05 - 0.005–0.1 Activity respiration fraction

11 a
(N)
P

0.025 m3 (mg C)−1d−1 0.005–0.05 Specific affinity constant for nitrogen

12 h
(N)
P

1.5 mmol NH4 m−3 0.25–5.0 Half-saturation constant for ammonium uptake

13 ϕ
(min)
N

6.87×10−3 mmol N (mg C)−1 5.0×10−4–1.0×10−2 Minium nitrogen quota

14 ϕ
(opt)
N

1.26×10−2 mmol N (mg C)−1 1.0×10−4–5.0×10−2 Optimal nitrogen quota

15 ϕ
(max)
N

1.5 ϕ
(opt)
N

mmol N (mg C)−1 1.0–5.0 Maximum nitrogen quota

16 a
(P)
P

2.5×10−3 m3 (mg C)−1d−1 1.0×10−3–5.0×10−3 Specific affinity constant for phosphorous

17 ϕ
(min)
P

4.29×10−4 mmol P (mg C)−1 1.0×10−4–1.0×10−3 Minimum phosphorous quota

18 ϕ
(opt)
P

7.86×10−4 mmol P (mg C)−1 1.0×10−4–1.0×10−3 Optimal phosphorous quota

19 ϕ
(max)
P

1.5ϕ
(opt)
P

mmol P (mg C)−1 1.0–5.0 Maximum phosphorous quota

20 l
(sink)
P

0.75 - 0.05–1.0 Nutrient stress threshold for sinking

21 w
(sink)
P

0.5 m d−1 0.25–1.0 Maximum sinking velocity

22 α
(0)
chl 1.52×10−5 mg C (mg Chl)−1(µE)−1m2 5.0×10−6–5.0×10−5 Maximum light utilization coefficient

23 θ
(0)
chl 0.016 mg Chl (mg C)−1 0.005–0.05 Maximum chlorophyll-to-carbon quota

Zooplankton Parameters

24 bZ 0.02 d−1 0.01–0.1 Basal specific respiration rate

25 r
(0)
Z

2.0 d−1 1.0–7.5 Potential specific growth rate

26 d
(0)
Z

0.25 d−1 0.05–0.5 Oxygen-dependent specific mortality rate

27 dZ 0.05 d−1 0.025–0.1 Specific mortality rate

28 ηZ 0.5 - 0.05–1.0 Assimilation efficiency

29 βZ 0.25 - 0.05–1.0 Fraction of activity excretion

30 ε
(C)
Z

0.60 - 0.05–1.0 Partition between dissolved and particulate excretion of C

31 ε
(N)
Z

0.72 - 0.05–1.0 Partition between dissolved and particulate excretion of N

32 ε
(P )
Z

0.832 - 0.05–1.0 Partition between dissolved and particulate excretion of P

33 h
(O)
Z

0.5 mmol O2 m−3 0.25–5.0 Half saturation for zooplankton processes

34 h
(F )
Z

200.0 mg C m−3 50.0–500.0 Michaelis Constant for total food ingestion

35 µZ 50.0 mg C m−3 25.0–100.0 Feeding Threshold

36 φ
(opt)
P 7.862×10−4 mmol P(mg C)−1 1.0×10−4–1.0×10−3 Optimal phosphorous quota

37 φ
(opt)
N 1.258×10−2 mmol N(mg C)−1 5.0×10−3–5.0×10−2 Optimal nitrogen quota

38 δZ,P 1.0 - 0.05–1.0 Availability of phytoplankton to zooplankton

Non-living Organic Parameters

39 Λ(nit)
N3 0.01 d−1 0.005–0.1 Specific nitrification rate at 10°C

40 h
(O)
N

10.0 mmol O2 m−3 1.0–10.0 Half saturation for chemical processes

41 ξCO2
0.1 d−1 0.005–0.75 Specific remineralization rate of particulate carbon

42 ξ
N(1)

0.1 d−1 0.005–0.75 Specific remineralization rate of particulate phosphorous

43 ξ
N(3)

0.1 d−1 0.005–0.75 Specific remineralization rate of particulate nitrogen

44 ζCO2
0.05 d−1 0.005–0.75 Specific remineralization rate of dissolved carbon

45 ζ
N(1)

0.05 d−1 0.005–0.75 Specific remineralization rate of dissolved phosphorous

46 ζ
N(3)

0.05 d−1 0.005–0.75 Specific remineralization rate of dissolved nitrogen

47 v(set) 1.0 m d−1 0.5–10.0 Settling velocity of particulate detritus

Boundary Condition Parameters

48 λO 0.06 m d−1 0.0–0.5 Relaxation constant for oxygen at bottom

49 λ
N(1) 0.06 m d−1 0.0–0.5 Relaxation constant for phosphate at bottom

50 λ
N(2) 0.06 m d−1 0.0–0.5 Relaxation constant for nitrate at bottom

51 κ
N(3) 0.05 m2 s−1 0.0–0.5 Relaxation diffusivity for ammonium at bottom
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Table B2. List of estimated BFM17 parameters controlling the marine ecosystem dynamics in the model.

No. Parameter Baseline value Units BATS HOTS Combined

Phytoplankton Parameters

1 εPAR 0.4 - 0.53 0.75 0.25

2 λw 0.0435 m−1 0.03 0.03 0.03

3 cP 0.03 m2(mg Chl)−1 0.005 0.005 0.005

4 c
R(2) 0.1×10−3 m2(mg C)−1 1.5×10−5 1.5×10−5 1.5×10−4

5 r
(0)
P

1.6 d−1 1.0 1.0 1.0

6 bP 0.05 d−1 0.005 0.005 8.05×10−3

7 d
(0)
P

0.05 d−1 0.005 0.075 0.005

8 h
(N,P)
P

0.1 - 0.04 0.015 0.005

9 βP 0.05 - 0.005 0.005 9.25×10−2

10 γP 0.05 - 0.1 0.005 0.1

11 a
(N)
P

0.025 m3(mg C)−1d−1 0.005 0.005 0.005

12 h
(N)
P

1.5 mmol NH4 m−3 3.51 0.25 0.25

13 ϕ
(min)
N

6.87×10−3 mmol N(mg C)−1 2.62×10−3 6.24×10−3 5.74×10−3

14 ϕ
(opt)
N

1.26×10−2 mmol N(mg C)−1 1.61×10−3 7.3×10−3 5.77×10−3

15 ϕ
(max)
N

1.5ϕ
(opt)
N

mmol N(mg C)−1 1.44 1.0 1.0

16 a
(P)
P

2.5×10−3 m3(mg C)−1d−1 0.005 1.89×10−3 0.005

17 ϕ
(min)
P

4.29×10−4 mmol P(mg C)−1 1.0×10−4 0.001 2.01×10−4

18 ϕ
(opt)
P

7.86×10−4 mmol P(mg C)−1 1.09×10−4 1.69×10−4 1.80×10−4

19 ϕ
(max)
P

1.5ϕ
(opt)
P

mmol P(mg C)−1 1.0 5.0 1.0

20 l
(sink)
P

0.75 - 0.05 0.05 0.21

21 w
(sink)
P

0.5 m d−1 1.0 0.25 0.25

22 α
(0)
chl 1.52×10−5 mg C(mg Chl)−1µE−1m2 7.31×10−6 5.0×10−5 7.32×10−6

23 θ
(0)
chl 0.016 mg Chl(mg C)−1 0.005 4.57×10−2 0.005

Zooplankton Parameters

24 bZ 0.02 d−1 0.01 0.01 0.01

25 r
(0)
Z

2.0 d−1 4.08 7.5 1.5

26 d
(0)
Z

0.25 d−1 0.5 0.5 0.3

27 dZ 0.05 d−1 0.1 0.1 0.1

28 ηZ 0.5 - 0.58 1.0 1.0

29 βZ 0.25 - 0.87 0.40 0.76

30 ε
(C)
Z

0.60 - 0.05 0.05 0.05

31 ε
(N)
Z

0.72 - 1.0 0.05 1.0

32 ε
(P )
Z

0.832 - 0.9 1.0 0.87

33 h
(O)
Z

0.5 mmol O2m−3 5.0 0.25 0.48

34 h
(F )
Z

200.0 mg Cm−3 500.0 500.0 500.0

35 µZ 50.0 mg Cm−3 100.0 100.0 74.5

36 φ
(opt)
P 7.862×10−4 mmol P(mg C)−1 3.12×10−4 1.0×10−3 6.93×10−4

37 φ
(opt)
N 1.258×10−2 mmol N(mg C)−1 4.61×10−2 4.66×10−2 4.85×10−2

38 δZ,P 1.0 - 0.16 1.0 1.0

Non-living Organic Parameters

39 Λ(nit)
N3 0.01 d−1 1.03×10−2 0.1 0.1

40 h
(O)
N

10.0 mmol O2 m−3 1.0 2.67 4.35

41 ξCO2
0.1 d−1 0.005 0.005 0.005

42 ξ
N(1)

0.1 d−1 1.58×10−2 0.75 0.005

43 ξ
N(3)

0.1 d−1 0.75 0.75 0.75

44 ζCO2
0.05 d−1 0.75 0.75 4.1×10−2

45 ζ
N(1)

0.05 d−1 0.42 0.75 0.75

46 ζ
N(3)

0.05 d−1 0.005 0.75 3.38×10−2

47 v(set) 1.0 m d−1 10.0 0.5 10.0

Boundary Condition Parameters

48 λO 0.06 m d−1 0.5 0.5 0.5

49 λ
N(1) 0.06 m d−1 0.13 0.5 0.17

50 λ
N(2) 0.06 m d−1 0.12 3.24×10−6 3.74×10−2

51 κ
N(3) 0.05 m2 s−1 2.51×10−5 1.20×10−4 1.25×10−4
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